If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is the depth of the lake...... $m$
$10$
$20$
$60$
$30$
Two long parallel glass plates has water between them. Contact angle between glass and water is zero. If separation between the plates is $'d'$ ( $d$ is small). Surface tension of water is $'T'$ . Atmospheric pressure = $P_0$ . Then pressure inside water just below the air water interface is
Two narrow bores of diameter $5.0\, {mm}$ and $8.0\, {mm}$ are joined together to form a $U-$shaped tube open at both ends. If this ${U}$-tube contains water, what is the difference in the level of two limbs of the tube.
[Take surface tension of water ${T}=7.3 \times 10^{-2} \, {Nm}^{-1}$, angle of contact $=0, {g}=10\, {ms}^{-2}$ and density of water $\left.=1.0 \times 10^{3} \,{kg} \,{m}^{-3}\right]$ (in $mm$)
A drop of water of volume $0.05\, cm^3$ is pressed between two glass plates, as a consequence of which it spreads and occupies an area of $40\, cm^2$. If the surface tension of water is $70\, dyne/cm$, then the normal force required to separate out the two glass plates will be in Newton
Pressure inside two soap bubbles are $1.02 \,atm$ and $1.05 \,atm$ respectively. The ratio of their surface area is .........
A liquid column of height $0.04 \mathrm{~cm}$ balances excess pressure of soap bubble of certain radius. If density of liquid is $8 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}$ and surface tension of soap solution is $0.28 \mathrm{Nm}^{-1}$, then diameter of the soap bubble is . . . . . . .. . $\mathrm{cm}$.
$\text { (if } g=10 \mathrm{~ms}^{-2} \text { ) }$