यदि चाल $V$, क्षेत्रफल $A$ एवं बल $F$ को मूल इकाई लिया जाए तो यंग-गुणांक की विमा होगी
$FA ^{-1} V ^{0}$
$FA ^{2} V ^{-1}$
$FA ^{2} V ^{-3}$
$FA ^{2} V ^{-2}$
न्यूटन के अनुसार, किसी द्रव की पर्तों के बीच लगने वाला श्यान बल $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ होता है । जहाँ $A$ द्रव की सतह का क्षेत्रफल, $\Delta v/\Delta z$ वेग प्रवणता और $\eta $ श्यानता गुणांक है तब $\eta $ की विमा होगी
कोई बल $F = at + b{t^2}$से प्रदर्शित किया जाता है, जहाँ $t$ समय है $a$ व $b$ की विमायें होगी
यंग - लाप्लास के नियमानुसार $R$ त्रिज्या वाले साबुन के बुलबुले के अंदर आंतरिक दाब निम्नलिखित समीकरण द्वारा दिया जाता है : $\triangle P=4 \sigma / R$, जहाँ $\sigma$ साबून का पृष्ठ तनाव स्थिरांक है। एतवोस संख्या (Eotvos number) $E_o$ एक विमाहीन (dimensionless) संख्या है जो द्रव की सतह पर उभरे हुए साबुन के बुलबुले के आकार का वर्णन करता है। यह गुरुत्वीय त्वरण $(g)$, घनत्व $(\rho)$ और लाक्षणिक लंबाई (characteristic length) $L$, जो कि बुलबुले की त्रिज्या भी हो सकती है, के द्वारा निरूपित किया जाता है। $E_o$ का एक संभावित व्यंजक है
आइए निम्नलिखित समीकरण पर विचार करे $\frac{1}{2} m v^{2}=m g h$ यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।