The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is
$300$
$300\sqrt 2 $
$200\sqrt 2 $
None of these
For $p, q \in R$, consider the real valued function $f ( x )=( x - p )^{2}- q , x \in R$ and $q >0$. Let $a _{1}, a _{2}, a _{3}$ and $a _{4}$ be in an arithmetic progression with mean $P$ and positive common difference. If $\left| f \left( a _{ i }\right)\right|=500$ for all $i=1,2,3,4$, then the absolute difference between the roots of $f ( x )=0$ is.
Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.
Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is