8. Sequences and Series
normal

If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is 

A

$44$

B

$42$

C

$40$

D

$46$

Solution

Let $\,\,a_{3}+a_{19}=a_{5}+a_{17}=2 a_{11}=k$

given $\,\,a_{3}+a_{5}+a_{11}+a_{17}+a_{19}=10$

$\Rightarrow \frac{5}{2} \mathrm{k}=10 \Rightarrow \mathrm{k}=4$

$\text { so } a_{1}+a_{21}=4$        ….$(1)$

$\sum\limits_{r = 1}^{21} {{a_r} = \frac{{21}}{2}\left[ {{{\rm{a}}_1} + {{\rm{a}}_{21}}} \right] = 42} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.