If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a $G.P.$ are $x, y$ and $z,$ respectively. Prove that $x,$ $y, z$ are in $G.P.$
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given condition,
$a_{4}=a r^{3}=x$ .......$(1)$
$a_{10}=a r^{9}=y$ .......$(2)$
$a_{16}=a r^{15}=z$ .......$(3)$
Dividing $(2)$ by $(1),$ we obtain
$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$
Dividing $(3)$ by $(2),$ we obtain
$\frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6}$
$\therefore \frac{y}{x}=\frac{z}{y}$
Thus, $x, y, z$ are in $G.P.$
For a sequence $ < {a_n} > ,\;{a_1} = 2$ and $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$. Then $\sum\limits_{r = 1}^{20} {{a_r}} $ is
In a $G.P.,$ the $3^{rd}$ term is $24$ and the $6^{\text {th }}$ term is $192 .$ Find the $10^{\text {th }}$ term.
If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a $G.P.$ are $a, b$ and $c,$ respectively. Prove that
$a^{q-r} b^{r-p} c^{p-q}=1$
The sum of the first three terms of a $G.P.$ is $S$ and their product is $27 .$ Then all such $S$ lie in
The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ is equal to