यदि किसी गुणोत्तर श्रेणी का $4$ वाँ, $10$ वाँ तथा $16$ वाँ पद क्रमश: $x, y$ तथा $z$ हैं, तो सिद्ध कीजिए कि $x, y, z$ गुणोत्तर श्रेणी में हैं।
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given condition,
$a_{4}=a r^{3}=x$ .......$(1)$
$a_{10}=a r^{9}=y$ .......$(2)$
$a_{16}=a r^{15}=z$ .......$(3)$
Dividing $(2)$ by $(1),$ we obtain
$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$
Dividing $(3)$ by $(2),$ we obtain
$\frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6}$
$\therefore \frac{y}{x}=\frac{z}{y}$
Thus, $x, y, z$ are in $G.P.$
संख्या $111..............1$ ($91$ बार) है
ऐसी $3$ संख्याएँ ज्ञात कीजिए जिनको $1$ तथा $256$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?
यदि गुणोत्तर श्रेणी के अनंत पदों का योगफल $s$ तथा प्रथम पद $a$ है, तो सार्वअनुपात $r$ होगा
गुणोत्तर श्रेणी $2,8,32, \ldots$ का कौन-सा पद $131072$ है ?