यदि किसी चतुर्भुज के कोण समान्तर श्रेणी में हैं और उनका सार्वअन्तर ${10^o}$ हो, तो चतुर्भुज के कोण होंगे
${65^o},\,{85^o},\,{95^o},\,{105^o}$
${75^o},\,{85^o},\,{95^o},\,{105^o}$
${65^o},\,{75^o},\,{85^o},\,{95^o}$
${65^o},\,{95^o},\,{105^o},\,{115^o}$
श्रेढ़ी $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4}$ का अन्त से $20^ {वा }$ पद है :-
किन्हीं तीन धनात्मक वास्तविक संख्याओं $a, b$ तथा $c$ के लिए $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ है, तो:
यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा
यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -
Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है
$1=a_{1}=a_{2}$ तथा $a_{n}=a_{n-1}+a_{n-2}, n \cdot>2$ तो
$\frac{a_{n+1}}{a_{n}}$ ज्ञात कीजिए, जबकि $n=1,2,3,4,5$