Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that Shamshad Ali buys a scooter for $Rs.$ $22000$ and pays $Rs.$ $4000$ in cash.

$\therefore $ Unpaid amount $=$ $Rs.$ $22000-$ $Rs.$ $4000=$ $Rs.$ $18000$

According to the given condition, the interest paid annually is

$10 \%$ of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots \ldots 10 \%$ of $1000$

Thus, total interest to be paid

$=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots \ldots+10 \%$ of $1000$

$=10 \%$ of $(18000+17000+16000+\ldots \ldots+1000)$

$=10 \%$ of $(1000+2000+3000+\ldots \ldots+18000)$

Here, $1000,2000,3000 \ldots .18000$ forms an $A.P.$ with first term and common difference both equal to $1000$

Let the number of terms be $n$

$\therefore 18000=1000+(n-1)(1000)$

$\Rightarrow n=18$

$\therefore 1000+2000+\ldots .+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]$

$=9[2000+17000]$

$=171000$

Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots .+1000)$

$=10 \%$ of $Rs .171000= Rs .17100$

$\therefore$ cost of scooter $= Rs .22000+ Rs .17100= Rs .39100$

Similar Questions

If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in

If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is

In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -

Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]

The interior angles of a polygon with n sides, are in an $A.P.$ with common difference $6^{\circ}$. If the largest interior angle of the polygon is $219^{\circ}$, then $n$ is equal to______

  • [JEE MAIN 2025]