Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?
It is given that Shamshad Ali buys a scooter for $Rs.$ $22000$ and pays $Rs.$ $4000$ in cash.
$\therefore $ Unpaid amount $=$ $Rs.$ $22000-$ $Rs.$ $4000=$ $Rs.$ $18000$
According to the given condition, the interest paid annually is
$10 \%$ of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots \ldots 10 \%$ of $1000$
Thus, total interest to be paid
$=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots \ldots+10 \%$ of $1000$
$=10 \%$ of $(18000+17000+16000+\ldots \ldots+1000)$
$=10 \%$ of $(1000+2000+3000+\ldots \ldots+18000)$
Here, $1000,2000,3000 \ldots .18000$ forms an $A.P.$ with first term and common difference both equal to $1000$
Let the number of terms be $n$
$\therefore 18000=1000+(n-1)(1000)$
$\Rightarrow n=18$
$\therefore 1000+2000+\ldots .+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]$
$=9[2000+17000]$
$=171000$
Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots .+1000)$
$=10 \%$ of $Rs .171000= Rs .17100$
$\therefore$ cost of scooter $= Rs .22000+ Rs .17100= Rs .39100$
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
If $a_m$ denotes the mth term of an $A.P.$ then $a_m$ =
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=2^{n}$
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to