यदि श्रेणी $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$ के प्रथम $n$ पदों का योग $435 \sqrt{3}$ है, तो $n$ बराबर है
$18$
$15$
$13$
$29$
यदि $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ समान्तर श्रेणी के क्रमागत पद हों, तो ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ होंगे
किसी समान्तर श्रेणी का $n$ वाँ पद $3n - 1$ है, तो इसके प्रथम पाँच पदों का योगफल होगा
श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है
क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है
यदि किसी समान्तर श्रेणी के तीन क्रमागत पदों का योग $51$ है तथा प्रथम व तृतीय पद का गुणनफल $273$ है, तो संख्यायें हैं