જો ધન $x-$અક્ષ તથા વર્તુળ $(x-2)^{2}+(y-3)^{2}=25$ ના $(5, 7)$ બિંદુએ અભિલંબ અને સ્પર્શકથી બનતા ત્રિકોણનું ક્ષેત્રફળ $A$ હોય, તો $24A =........ .$
$1140$
$1225$
$2450$
$612$
વિધાન $(A)\ : \theta$ ના બધા મુલ્ય માટે રેખા $(x -3)\ cos\theta + (y - 3)\ sin\theta = 1$ એ વર્તૂળ $(x - 3)^2 + (y - 3)^2\,\,=1$ ને સ્પર્શેં છે.
કારણ $(R)$ : $\theta$ ના બધા મુલ્યો માટે $xcos\ \theta + y\ sin \theta =\,a$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને સ્પર્શેં છે.
વર્તૂળ કે જેની ત્રિજયા $r$ છે અને વ્યાસ $PR$ ના અત્યબિંદુ પર દોરવામાં આવેલ સ્પર્શકો $PQ$ અને $RS$ છે. જો $PS$ અને $RQ$ એ વર્તૂળપરના બિંદુ $X$ માં છેદે છે , તો $2r$ મેળવો.
અહી $B$ એ વર્તુળ $x^{2}+y^{2}-2 x+4 y+1=0$ નું કેન્દ્ર છે. અહી બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ આગળના સ્પર્શકો બિંદુ $\mathrm{A}(3,1)$ આગળ છેદે છે તો $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ ની કિમંત મેળવો.
$(3, -4)$ માંથી વર્તૂળ $ x^2 + y^2- 4x - 6y + 3 = 0$ પરના સ્પર્શકની લંબાઈનો વર્ગ ....
ધારો કે $y=x+2,4 y=3 x+6^2 y^2 3 y=4 x+1$ અને $3 y=4 x+1$ એ વર્તુળ $(x- h )^2+(y- k )^2= r ^2$ ની ત્રણ સ્પર્શ રેખાઓ છે.તો $h+k=..........$