જો બુલિયન બહુપદી $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ એ સંપૂર્ણ સત્ય હોય તો $p *(\sim q )$ એ . . . . ને તુલ્ય છે.
$q \Rightarrow p$
$\sim q \Rightarrow p$
$p \Rightarrow \sim q$
$p \Rightarrow q$
આપેલ પૈકી ક્યૂ વિધાન સંપૂર્ણ સત્ય નથી ?
મિશ્ર વિધાન $(\sim(P \wedge Q)) \vee((\sim P) \wedge Q) \Rightarrow((\sim P) \wedge(\sim Q))$ એ $...........$ ને સમકક્ષ છે.
આપેલ વિધાનનું નિષેધ કરો:” જો હુ શિક્ષક બનીશ ,તો હુ સ્કુલ બનાવીશ.” .
$(p \to q) \leftrightarrow (q\ \vee \sim p)$ એ .......... છે
ધારો કે $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ એવું છે કે જેથી $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ નિત્યસત્ય થાય, તો $\Delta=\dots\dots\dots$