If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to

  • [JEE MAIN 2021]
  • A

    $q \Rightarrow p$

  • B

    $\sim q \Rightarrow p$

  • C

    $p \Rightarrow \sim q$

  • D

    $p \Rightarrow q$

Similar Questions

The conditional $(p \wedge q) ==> p$ is

$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to

Which of the following is a tautology?

  • [JEE MAIN 2020]

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :

  • [JEE MAIN 2015]

$\sim (p \Leftrightarrow q)$ is