If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to
$q \Rightarrow p$
$\sim q \Rightarrow p$
$p \Rightarrow \sim q$
$p \Rightarrow q$
The conditional $(p \wedge q) ==> p$ is
$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
Which of the following is a tautology?
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :
$\sim (p \Leftrightarrow q)$ is