वृत्तों $x ^{2}+ y ^{2}-6 x =0$ तथा $x ^{2}+ y ^{2}-4 y =0$, के प्रतिच्छेदन बिन्दुओं से हो कर जाने वाले वह वृत्त जिसका केन्द्र, रेखा $2 x -3 y +12=0$ पर स्थित है, निम्न में से जिस बिंदु से भी हो कर जाता है, वह है
$(1,-3)$
$(-1,3)$
$(-3,1)$
$(-3,6)$
यदि वृत्त $x^2+y^2+6 x+8 y+16=0$ तथा $x ^2+ y ^2+2(3-\sqrt{3}) x + x +2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k > 0$ बिंदु $P (\alpha, \beta)$ पर अंत: स्पर्श करते हैं, तो $(\alpha+\sqrt{3})^2+(\beta+\sqrt{6})^2$ बराबर है $..............$
वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$, वृत्त ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$ की परिधि को समद्विभाजित करेगा यदि
उस वृत्त का समीकरण जो बिन्दु $(-2, 4)$ तथा वृत्त ${x^2} + {y^2} - 2x - 6y + 6 = 0$ और रेखा $3x + 2y - 5 = 0$ के प्रतिच्छेद बिन्दु से गुजरता है, होगा
किसी त्रिभुज की तीन भुजाओं को व्यास मानकर खींचे गये वृत्तों का मूलकेन्द्र त्रिभुज का होगा
यदि वृत्त ${x^2} + {y^2} - 2ax + c = 0$ तथा ${x^2} + {y^2} + 2by + 2\lambda = 0$ एक दूसरे को समकोण पर काटते हैं, तो $\lambda $ का मान