यदि वक्र $x ^{2}-6 x + y ^{2}+8=0$ तथा $x ^{2}-8 y + y ^{2}+$ $16- k =0,( k >0)$ एक दूसरे को एक बिन्दू पर स्पर्श करते हैं, तो $k$ का अधिकतम मान है
$25$
$36$
$30$
$42$
उस वृत्त का समीकरण जो मूल बिन्दु से गुजरता है एवं जिसका केन्द्र $x + y = 4$ पर है एवं वृत्त ${x^2} + {y^2} - 4x + 2y + 4 = 0$ को लम्बवत् काटता है, होगा
दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
सरल रेखा $y - x = 0$ तथा $y$-अक्ष के स्पर्षी वृत्तों की संख्या निम्न है
$C_1$ तथा $C_2$ दो वृत्त एक दूसरे को वाह्य रुप से एक बिंदु $A$ पर स्पर्श करते है। मान लें कि $A B$ वृत्त $C_1$ का ब्यास है। वृत्त $C_2$ का एक कोटिज्य $(secant)$ $B A_3$ है, जो वृत्त $C_1$ को एक बिंदु $A_1(\neq A)$ पर काटती है तथा वृत्त $C_2$ को $A_2$ और $A_3$ पर काटती है। यदि $B A_1=2, B A_2=3$ तथा $B A_3=4$ हैं तो वृत्त $C_1$ तथा $C_2$ की त्रिज्याएँ क्रमशः निम्नलिखित होगी
यदि वृत्तों ${x^2} + {y^2} - 6x + 2y + 4 = 0$ व ${x^2} + {y^2} + 2x - 4y - 6 = 0$ के प्रतिच्छेद बिन्दुओं से जाने वाले वृत्त का केन्द्र रेखा $y = x$ पर हो, तो वृत्त का समीकरण है