यदि वृत्त $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ तथा $( x -4)^{2}+( y -7)^{2}=36$ दो भिन्न बिन्दुओं पर काटते हैं, तो
$0 < r < 1$
$1 < r < 11$
$r>11$
$r=11$
दो वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-16 x -10 y +80=0$
के लिए असत्य कथन चुनिए
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो
एक बिन्दु $P$ से दो वृत्तों के मूलाक्षों पर स्पर्शियाँ खींची जाती हैं, जो वृत्तों को क्रमश: $Q$ तथा $R$ पर स्पर्श करती हैं, तब $PQR$ को मिलाने पर बनने वाला त्रिभुज होगा
यदि दो वृत्त $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ तथा ${x^2} + {y^2} - 4x + 10y + 16 = 0$ एक दूसरे को लम्बवत् काटते हैं, तब $k$ का मान है
वृत्त ${x^2} + {y^2} - 10x + 16 = 0$ और ${x^2} + {y^2} = {r^2}$ एक दूसरे को दो अलग-अलग बिन्दुओं पर प्रतिच्छेद करेंगे यदि