10-1.Circle and System of Circles
hard

यदि वृत्त $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ तथा $( x -4)^{2}+( y -7)^{2}=36$ दो भिन्न बिन्दुओं पर काटते हैं, तो

A

$0 < r < 1$

B

$1 < r < 11$

C

$r>11$

D

$r=11$

(JEE MAIN-2019)

Solution

${x^2} + {y^2} – 16x – 20y + 164 = {r^2}$

$A\left( {8,10} \right),{R_1} = r$

${\left( {x – 4} \right)^2} + {\left( {y – 7} \right)^2} = 36$

$B\left( {4,7,} \right),{R_2} = 6$

$\left| {{R_1} – {R_2}} \right| < AB < {R_1} + {R_2}$

$ \Rightarrow 1 < r < 11$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.