10-1.Circle and System of Circles
hard

$a , b , c ( a < b < c )$ त्रिज्याओं वाले तीन वृत्त परस्पर बाह्य स्पर्श करते हैं। यदि $x$ -अक्ष उनकी एक उभयनिष्ठ स्पर्श रेखा है, तो :

A

$\frac{1}{{\sqrt a }} = \frac{1}{{\sqrt b }} + \frac{1}{{\sqrt c }}$

B

$\frac{1}{{\sqrt b }} = \frac{1}{{\sqrt a }} + \frac{1}{{\sqrt c }}$

C

$a, b, c$ स. श्रे. में है

D

$\sqrt a ,\sqrt b ,\sqrt c $ स. श्रे. में है

(JEE MAIN-2019)

Solution

Length of direct common tangent for

circle ${C_1}$  and ${C_2}$ is

$AB = \sqrt {{{\left( {a + b} \right)}^2} – {{\left( {a – b} \right)}^2}} $

For ${C_3}$ and ${C_2}$

Length of direct common tangent for is

$BC = \sqrt {{{\left( {a + c} \right)}^2} – {{\left( {a – c} \right)}^2}} $

For ${C_1}$ and ${C_3}$ 

Length of direct common tangent for is

$AC = \sqrt {{{\left( {a + c} \right)}^2} – {{\left( {b – c} \right)}^2}} $

$AB + BC = AC$

$\sqrt {{{\left( {a + c} \right)}^2} – {{\left( {a – c} \right)}^2}}  + \sqrt {{{\left( {a + c} \right)}^2} – {{\left( {a – c} \right)}^2}} $

$ = \sqrt {{{\left( {a + c} \right)}^2} – {{\left( {b – c} \right)}^2}} $

$\sqrt {ab}  + \sqrt {ac}  = \sqrt {bc} $

$\frac{1}{{\sqrt c }} + \frac{1}{{\sqrt b }} = \frac{1}{{\sqrt a }}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.