- Home
- Standard 11
- Mathematics
दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि
$|a|=c$
$a=2c$
$|a|=2c$
$2|a|=c$
Solution
The centres and radii are
$\left(x-\frac{a}{2}\right)^{2}+y^{2}=\frac{a^{2}}{4}, \quad x^{2}+y^{2}=c^{2}$
Centre $\left(\frac{a}{2}, 0\right)$ and $(0,0)$ and radius $=\frac{a}{2}$ and $c$
$\sqrt{\left(\frac{a}{2}\right)^{2}+(0-0)}=|| \frac{a}{2}|\pm c|$
$ \Rightarrow\left|\frac{a}{2}\right|=|| \frac{a}{2}|\pm c|$
$\Rightarrow\left|\frac{a}{2}\right|=c-\left|\frac{a}{2}\right|, \quad \therefore|a|=c$
Similar Questions
अनुच्छेद में दी गई जानकारी के आधार पर सूचियों का उचित मिलान करके प्रश्न का उत्तर दें। माना कि वृत्त (circle) $C_1: x^2+y^2=9$ और वृत्त $C_2:(x-3)^2+(y-4)^2=16$ एक दूसरे को बिन्दुओं $X$ और $Y$ पर काटते हैं। माना लीजिये एक और वृत्त $C _3:( x – h )^2+( y – k )^2= r ^2$ निम्नलिखित शर्तों को संतुष्ट करता है :
$(i)$ $C _3$ का केंद्र (centre) $C _1$ और $C _2$ के केन्द्रों के सरेख (Collinear) है।
$(ii)$ $C _1$ और $C _2$ दोनों $C _3$ के अन्दर हैं और
$(iii)$ $C _3, C _1$ को $M$ और $C _2$ को $N$ पर स्पर्श करता है।
माना कि $X$ और $Y$ से होकर जाने वाली रेखा $C _3$ को $Z$ और $W$ पर काटती है तथा $C _1$ और $C _3$ की एक उभयनिष्ठ स्पर्श रेखा (Common tangent) परवलय $x ^2=8 \alpha y$ की स्पर्श रेखा है।
सूची-$I$($List-I$) में कुछ व्यंजक (expression) हैं जिनका मान नीचे दी गयी सूची-$II$($List-II$) में है
$List-I$ | $List-II$ |
$(I)$ $2 h + k$ | $(P)$ $6$ |
$(II)$ $ZW$ की लंबाई \ $XY$ की लंबाई | $(Q)$ $\sqrt{6}$ |
$(III)$ त्रिभुज $MZN$ का क्षेत्र फल $ZMW$ | $(R)$ $\frac{5}{4}$ |
$(IV)$ $\alpha$ | $(S)$ $\frac{21}{5}$ |
$(T)$ $2 \sqrt{6}$ | |
$(U)$ $\frac{10}{3}$ |
($1$) निम्न में से कौन सा एकमात्र संयोजन गलत है ?
$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$
($2$) निम्न में से कौन सा एकमात्र संयोजन सही है ?
$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$
Give the answer or quetion ($1$) and ($2$)