दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि
$|a|=c$
$a=2c$
$|a|=2c$
$2|a|=c$
वृत्त ${x^2} + {y^2} - 2x - 4y = 0$ व ${x^2} + {y^2} - 8y - 4 = 0$
एक रेखा $L$ दो वृत्तों ${x^2} + {y^2} = 25$ व ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दुओं से जाती है। दूसरे वृत्त के केन्द्र से इस रेखा $L$ पर डाले गये लम्ब की लम्बाई होगी
यदि वृत्त ${x^2} + {y^2} = {a^2}$ तथा ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ एक-दूसरे को बाह्यत: स्पर्श करते हों, तो
वृत्तों $x^{2}+y^{2}-4 x-6 y-12=0$ तथा $x^{2}+y^{2}+6 x+18 y+26=0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
वृत्तों ${x^2} + {y^2} - 6x - 2y + 1 = 0$ तथा ${x^2} + {y^2} + 2x - 8y + 13 = 0$ के लिए निम्न में से कौनसा सत्य है