यदि वृत्त ${x^2} + {y^2} = 4,{x^2} + {y^2} - 10x + \lambda  = 0$ एक-दूसरे को बाह्यत: स्पर्श करते हैं, तब $\lambda $ का मान है

  • A

    $-16$

  • B

    $9$

  • C

    $16$

  • D

    $25$

Similar Questions

यदि वृत्त $x^2+y^2+6 x+8 y+16=0$ तथा $x ^2+ y ^2+2(3-\sqrt{3}) x + x +2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k > 0$ बिंदु $P (\alpha, \beta)$ पर अंत: स्पर्श करते हैं, तो $(\alpha+\sqrt{3})^2+(\beta+\sqrt{6})^2$ बराबर है $..............$

  • [JEE MAIN 2022]

माना कि $C_1$ एक वृत्त है जिसकी त्रिज्या $1$ और केंद्र मूल बिंदु है। माना कि $C_2$ एक वृत्त है जिसकी त्रिज्या $r$, जहाँ $1 < r < 3$ है, और केंद्र बिंदु $A=(4,1)$ है। $C_1$ एवं $C_2$ की दो भिन्न उभयनिष्ट स्पर्श रेखाएं (distinct common tangents) $P Q$ एवं $S T$ खींची जाती हैं। स्पर्श रेखा $P Q$, वृत्त $C_1$ को $P$ पर और वृत्त $C_2$ को $Q$ पर स्पर्श करती है। स्पर्श रेखा $S T$, वृत्त $C_1$ को $S$ पर और वृत्त $C_2$ को $T$ पर स्पर्श करती है। रेखा खंडों $P Q$ एवं $S T$ के मध्य बिन्दुओं को मिलाकर एक रेखा बनाई जाती है जो $x$-अक्ष को बिंदु $B$ पर मिलती है। यदि $A B=\sqrt{5}$, तब $r^2$ का मान है

  • [IIT 2023]

यदि वृत्त $(x+1)^2+(y+2)^2=r^2$ तथा $x^2+y^2-4 x-4 y+4=0$ एक दूसरे को ठीक दो विभिन्न बिंदुओं पर काटते हैं, तो

  • [JEE MAIN 2024]

वृत्तों ${x^2} + {y^2} + x - y + 2 = 0$ व $3{x^2} + 3{y^2} - 4x - 12 = 0$ के मूलाक्ष का समीकरण है

वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं