उस वृत्त का समीकरण जो वृत्तों ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$ व ${x^2} + {y^2} - 7x - 8y - 9 = 0$ को समकोण पर काटता है, होगा
${x^2} + {y^2} - 4x - 4y - 3 = 0$
$3({x^2} + {y^2}) + 4x - 4y - 3 = 0$
${x^2} + {y^2} + 4x + 4y - 3 = 0$
$3({x^2} + {y^2}) + 4(x + y) - 3 = 0$
यदि तीन समाक्ष वृत्तों के केन्द्र $P, Q, R$ एवं त्रिज्यायें क्रमश: ${r_1},\,\,{r_2},\,\,{r_3}$ हों, तो $QRr_1^2 + RP\,r_2^2 + PQr_3^2 = $
दो वत्तों जिनके समीकरण
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-22 x -10 y +137=0$ हैं, के लिए सही कथन चुनिए
उस वृत्त का समीकरण जो मूल बिन्दु से गुजरता है एवं जिसका केन्द्र $x + y = 4$ पर है एवं वृत्त ${x^2} + {y^2} - 4x + 2y + 4 = 0$ को लम्बवत् काटता है, होगा
यदि वृत्त $x^2+y^2+6 x+8 y+16=0$ तथा $x ^2+ y ^2+2(3-\sqrt{3}) x + x +2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k > 0$ बिंदु $P (\alpha, \beta)$ पर अंत: स्पर्श करते हैं, तो $(\alpha+\sqrt{3})^2+(\beta+\sqrt{6})^2$ बराबर है $..............$
एक वृत्त ${x^2} + {y^2} + 2gx + c = 0$ के समाक्षीय निकाय में, जहाँ $g$ एक प्राचल है, यदि $c > 0$, तब वृत्त हैं