જો $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ ના દ્રીપદી વિસ્તરણમાં, $x^{10}$ નો સહગુણક $5^{ k } l$ હોય, જ્યાં $l, k \in N$ છે તથા $l$ અને $5$ પરસ્પર અવિભાજય છે,તો $k=\dots\dots$
$5$
$6$
$7$
$8$
${({x^2} - x - 2)^5}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.
જો $a$ અને $b$ ભિન્ન પૂર્ણાક હોય, તો સાબિત કરો કે $a^{n}-b^{n}$ નો એક અવયવ $a-b$ છે, જ્યાં $n$ એ ધન પૂર્ણાક છે.
$\left(1+\mathrm{x}+\mathrm{x}^{2}\right)^{10}$ ના વિસ્તરણમાં $x^{4}$ ના મેળવો.
ધારોકે $(1+2 x)^n$ ના દ્વિપદી વિસ્તરણમાં ત્રણ ક્રમિક પદોનાં સહગુણકો $2:5:8$ ના ગુણોત્તર માં છે. તો આ ત્રણ પદોની મધ્યમાં આવેલ પદનો સહગુણક $.........$ છે.
${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ ના વિસ્તરણ ${6^{th}}$ પદ મેળવો.