यदि $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ के प्रसार में $\mathrm{x}^{30}$ का गुणांक $\alpha$ है, तो $|\alpha|$ बराबर है.............
$676$
$677$
$678$
$679$
${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=
यदि $x + y = 1$, तब $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ बराबर है
यदि $\sum_{ r =0}^{25}\left\{{ }^{50} C _{ r } \cdot{ }^{50- r } C _{25- r }\right\}= K \left({ }^{50} C _{25}\right)$ हो, तो $K$ का मान होगा
$x$ की घातों में $\left(1+x+x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{4}$ का गुणांक है .............
$\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}}{ }^{23} \mathrm{C}_{\mathrm{r}}$ का मान है