${(a + b)^n}$ ના વિસ્તરણમાં ચોથાપદ નો સહગુણક 56 હોય, તો $n$ મેળવો.
$12$
$10$
$8$
$6$
જો $1 + {x^4} + {x^5} = \sum\limits_{i = 0}^5 {{a_i}\,(1 + {x})^i,} $ બધા $x\,\in$ $R$ માં આવેલ છે તો $a_2$ ની કિમત મેળવો.
${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ ના વિસ્તરણમાં ${t^{12}}$ નો સહગુનક મેળવો
${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ ના વિસ્તરણમાં $x^{-5}$ નો સહગુણક મેળવો. જ્યાં $x \ne 0, 1$
જો $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ ના વિસ્તરણમાં $x$ થી સ્વત્રંત પદ $k,$ હોય તો $18 k$ ની કિમત મેળવો.
જો $x^7$ & $x^8$ નો સહગુણક ${\left[ {2\,\, + \,\,\frac{x}{3}} \right]^n}$ ના વિસ્તરણમાં સરખા હોય તો $n$ ની કિમત મેળવો