7.Binomial Theorem
hard

$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ ના વિસ્તરણમાં $x^{2012}$ નો સહગુણક........................છે.

A

$0$

B

$11$

C

$2$

D

$3$

(JEE MAIN-2024)

Solution

$ (1-x)(1-x)^{2007}\left(1+x+x^2\right)^{2007} $

$ (1-x)\left(1-x^3\right)^{2007} $

$ (1-x)\left({ }^{2007} C_0-{ }^{2007} C_1\left(x^3\right)+\ldots \ldots .\right)$

General term

$ (1-x)\left((-1)^r{ }^{2007} C_r x^{3 r}\right) $

$ (-1)^{r 2007} C_r x^{3 r}-(-1)^{r 2007} C_r x^{3 r+1} $

$ 3 r=2012 $

$ r \neq \frac{2012}{3} $

$ 3 r+1=2012 $

$ 3 r=2011 $

$ r \neq \frac{2011}{3}$

Hence there is no term containing $\mathrm{x}^{2012}$.

So coefficient of $x^{2012}=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.