यदि ${(1 + x)^{2n + 2}}$ के प्रसार में मध्य पद का गुणांक $p$ है तथा ${(1 + x)^{2n + 1}}$ के प्रसार में मध्य पदों के गुणांक $q$ तथा $r$ हैं, तब

  • A

    $p + q = r$

  • B

    $p + r = q$

  • C

    $p = q + r$

  • D

    $p + q + r = 0$

Similar Questions

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के प्रसार में ${x^{32}}$ का गुणांक होगा

दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ है, जहाँ $n$ एक धन पूर्णांक है।

यदि ${(1 + ax)^n}$, $(n \ne 0)$ के विस्तार में प्रथम तीन पद क्रमश: $1, 6x$ व $16x^2$ हैं, तो $a$ व $n$ के मान क्रमश: होंगे

${(1 + x)^n}$ के द्विपद विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी में हैं, तब ${n^2} - 9n$ का मान होगा

$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।