7.Binomial Theorem
hard

જો ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ ના વિસ્તરણમાં $x^{-2}$ અને  $x^{-4}$ ના સહગુણક  અનુક્રમે $m$ અને $n$ હોય તો $\frac{m}{n}$ = ... 

A

$27$

B

$182$

C

$\frac{5}{4}$

D

$\frac{4}{5}$

(JEE MAIN-2016)

Solution

$T_{r+1}=18 C_{r}\left(x^{\frac{1}{3}}\right)^{18-r}\left(\frac{1}{2 x^{\frac{1}{3}}}\right)^{r}$

$=^{18} C_{r} x^{6-\frac{2 r}{3}} \frac{1}{2^{r}}$

$\left\{ \begin{gathered}
  6 – \frac{{2r}}{3} =  – 2 \Rightarrow r = 12 \hfill \\
  \& \,6 – \frac{{2r}}{3} =  – 4 \Rightarrow r = 15 \hfill \\ 
\end{gathered}  \right\}$

$\Rightarrow \quad \frac{\text { coefficient of } x^{-2}}{\text { coefficient of } x^{-4}}=\frac{^{18} C_{12} \frac{1}{2^{12}}}{^{18} C_{15} \frac{1}{2^{15}}}=182$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.