7.Binomial Theorem
hard

यदि $\left(x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{1}{3}}}\right)^{18},(x>0)$, के प्रसार में $x^{-2}$ तथा $x^{-4}$ के गुणांक क्रमशः $m$ तथा $n$ हैं, तो $\frac{m}{n}$ बराबर है

A

$27$

B

$182$

C

$\frac{5}{4}$

D

$\frac{4}{5}$

(JEE MAIN-2016)

Solution

$T_{r+1}=18 C_{r}\left(x^{\frac{1}{3}}\right)^{18-r}\left(\frac{1}{2 x^{\frac{1}{3}}}\right)^{r}$

$=^{18} C_{r} x^{6-\frac{2 r}{3}} \frac{1}{2^{r}}$

$\left\{ \begin{gathered}
  6 – \frac{{2r}}{3} =  – 2 \Rightarrow r = 12 \hfill \\
  \& \,6 – \frac{{2r}}{3} =  – 4 \Rightarrow r = 15 \hfill \\ 
\end{gathered}  \right\}$

$\Rightarrow \quad \frac{\text { coefficient of } x^{-2}}{\text { coefficient of } x^{-4}}=\frac{^{18} C_{12} \frac{1}{2^{12}}}{^{18} C_{15} \frac{1}{2^{15}}}=182$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.