यदि $(1+a)^{n}$ के प्रसार में $a^{r-1}, a^{r}$ तथा $a^{r+1}$ के गुणांक समांतर श्रेणी में हों तो सिद्ध कीजिए कि $n^{2}-n(4 r+1)+4 r^{2}-2=0$
The $(r+1)^{\text {th }}$ term in the expansion is ${\,^n}{C_r}{a^r}$. Thus it can be seen that $a^{r}$ occurs in the $(r+1)^{\text {th }}$ term, and its coefficient is ${\,^n}{C_r}$.
Hence the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ are ${\,^n}{C_{r - 1}},{\,^n}{C_r}$ and $^{n} C_{r+1},$ respectively. since these coefficients are in arithmetic progression, so we have, ${\,^n}{C_{r - 1}} + {\,^n}{C_{r + 1}} = 2.{\,^n}C,$ This gives
$\frac{n !}{(r-1) !(n-r+1) !}+\frac{n !}{(r+1) !(n-r-1) !}=2 \times \frac{n !}{r !(n-r) !}$
i.e., $\frac{1}{(r-1) !(n-r+1)(n-r)(n-r-1) !}+\frac{1}{(r+1)(r)(r-1) !(n-r-1) !}$
$=2 \times \frac{1}{r(r-1) !(n-r)(n-r-1) !}$
or $\frac{1}{(r-1) !(n-r-1) !}\left[\frac{1}{(n-r)(n-r+1)}+\frac{1}{(r+1)(r)}\right]$
$=2 \times \frac{1}{(r-1) !(n-r-1) ![r(n-r)]}$
i.e., $\frac{1}{(n-r+1)(n-r)}+\frac{1}{r(r+1)}=\frac{2}{r(n-r)}$
or $\frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1) r(r+1)}=\frac{2}{r(n-r)}$
or $r(r+1)+(n-r)(n-r+1)=2(r+1)(n-r+1)$
or $r^{2}+r+n^{2}-n r+n-n r+r^{2}-r=2\left(n r-r^{2}+r+n-r+1\right)$
or $n^{2}-4 n r-n+4 r^{2}-2=0$
i.e., $n^{2}-n(4 r+1)+4 r^{2}-2=0$
$\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ विस्तार में (expansion) $x^{11}$ का गुणांक (coefficient) है-
${({x^2} - x - 2)^5}$ के विस्तार में ${x^5}$ का गुणांक होगा
${(a + b)^n}$ के विस्तार में चतुर्थ पद $56$ हो, तो $n$ का मान होगा
यदि $n$ एक सम धनात्मक पूर्णांक है, तब ${(1 + x)^n}$ के प्रसार में महत्तम पद का गुणांक भी महत्तम हो, इसकी शर्त है
यदि $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ के विस्तार में आरंभ से पाँचवे पद का अंत से पाँचवे पद से अनुपात $\sqrt{6}: 1$ है, तब आरंभ से तीसरा पद है :