${(1 + x)^{21}} + {(1 + x)^{22}} + .......... + {(1 + x)^{30}}$ के विस्तार में ${x^5}$ का गुणांक होगा
$^{51}{C_5}$
$^9{C_5}$
$^{31}{C_6}{ - ^{21}}{C_6}$
$^{30}{C_5}{ + ^{20}}{C_5}$
यदि $\left(x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{1}{3}}}\right)^{18},(x>0)$, के प्रसार में $x^{-2}$ तथा $x^{-4}$ के गुणांक क्रमशः $m$ तथा $n$ हैं, तो $\frac{m}{n}$ बराबर है
${\left( {{x^2} - \frac{1}{x}} \right)^9}$ के प्रसार में $x$ से स्वतंत्र पद होगा
यदि $(a+b)^{n}$ के प्रसार में प्रथम तीन पद क्रमशः $729,7290$ तथा $30375$ हों तो $a, b,$ और $n$ ज्ञात कीजिए।
${(1 + \alpha x)^4}$ व ${(1 - \alpha x)^6}$ के प्रसार में मध्य पद के गुणांक समान होंगे यदि $\alpha $ का मान है
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।