If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The coefficients of $(r-5)^{ th }$ and $(2 r-1)^{th }$ terms of the expansion $(1+x)^{34}$ are $^{34}{C_{r - 6}}$ and $^{34}{C_{2r - 2}},$ respectively. Since they are equal so ${\,^{34}}{C_{r - 6}} = {\,^{34}}{C_{2r - 2}}$

Therefore, either $r-6=2 r-2$ or $r-6=34-(2 r-2)$

[Using the fact that if ${\,^n}{C_r} = {\,^m}{C_p},$ then either $r = p$ or $r = n - p$ ]

So, we get $r=-4$ or $r=14 . r$ being a natural number, $r=-4$ is not possible. So, $r=14$

 

Similar Questions

If the coefficient of $x ^{10}$ in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{ k } l$, where $l, k \in N$ and $l$ is coprime to $5$ , then $k$ is equal to

  • [JEE MAIN 2022]

If $\frac{{{T_2}}}{{{T_3}}}$ in the expansion of ${(a + b)^n}$ and $\frac{{{T_3}}}{{{T_4}}}$ in the expansion of ${(a + b)^{n + 3}}$ are equal, then $n=$

The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is

The middle term in the expression of ${\left( {x - \frac{1}{x}} \right)^{18}}$ is

The sum of the real values of $x$ for which the middle term in the binomial expansion of ${\left( {\frac{{{x^3}}}{3} + \frac{3}{x}} \right)^8}$ equals $5670$ is

  • [JEE MAIN 2019]