7.Binomial Theorem
medium

જો $(1+x)^{34}$ ના વિસ્તરણના $(r -5)$ માં પદ અને $(2 -1)$ માં પદના સહગુણકો સમાન હોય, તો $r$ શોધો. 

A

$14$

B

$14$

C

$14$

D

$14$

Solution

The coefficients of $(r-5)^{ th }$ and $(2 r-1)^{th }$ terms of the expansion $(1+x)^{34}$ are $^{34}{C_{r – 6}}$ and $^{34}{C_{2r – 2}},$ respectively. Since they are equal so ${\,^{34}}{C_{r – 6}} = {\,^{34}}{C_{2r – 2}}$

Therefore, either $r-6=2 r-2$ or $r-6=34-(2 r-2)$

[Using the fact that if ${\,^n}{C_r} = {\,^m}{C_p},$ then either $r = p$ or $r = n – p$ ]

So, we get $r=-4$ or $r=14 . r$ being a natural number, $r=-4$ is not possible. So, $r=14$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.