यदि $\left(a x^2+\frac{1}{2 b x}\right)^{11}$ में $x^7$ तथा in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ में $\mathrm{x}^{-7}$ के गुणांक बराबर हैं, तो
$64 ab =243$
$729 ab =32$
$243 ab =64$
$32 ab =729$
यदि $(1+x)^{34}$ के प्रसार में $(r-5)^{th}$ और$(2 r-1)^{th}$ पदों के गुणांक समान हों $r$ ज्ञात कीजिए।
यदि $( x +1)^{ n }$ के $x$ की घातों में द्विपद प्रसार में कोई तीन क्रमागत गुणांक $2: 15: 70$ के अनुपात में है, तो इन तीन गुणांकों का औसत हैं
माना $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ के प्रसार में सातवें तथा तेरहवें पदों के गुणांक क्रमशः $m$ तथा $n$ है। तो $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ बराबर है :
${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद है
$\lambda$ का धनात्मक मान, जिसके लिये व्यंजक $x ^{2}\left(\sqrt{ x }+\frac{\lambda}{ x ^{2}}\right)^{10}$ में $x ^{2}$ का गुणांक $720$ है, होगा