यदि $\left(a x^2+\frac{1}{2 b x}\right)^{11}$ में $x^7$ तथा in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ में $\mathrm{x}^{-7}$ के गुणांक बराबर हैं, तो
$64 ab =243$
$729 ab =32$
$243 ab =64$
$32 ab =729$
सिद्ध कीजिए कि $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
$\left(x^4-\frac{1}{x^3}\right)^{15}$ के प्रसार में $x^{18}$ का गुणांक है
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद है
यदि $p$ तथा $q$ धनात्मक पूर्णांक हों, तो${(1 + x)^{p + q}}$ के विस्तार में ${x^p}$ तथा ${x^q}$ के गुणांक होंगे
यदि $\left( x ^{2}+\frac{1}{ bx }\right)^{11}, b \neq 0$, में $x ^{7}$ का गुणांक तथा $\left( x -\frac{1}{ bx ^{2}}\right)^{11}$, में $x ^{-7}$ का गुणांक बराबर है, तो $b$ का मान बराबर है ?