7.Binomial Theorem
medium

જો ${(3 + ax)^9}$ ના વિસ્તરણમાં ${x^2}$ અને ${x^3}$ ના સહગુણક સમાન હોય તો $a$ ની કિમંત મેળવો.

A

$ - \frac{7}{9}$

B

$ - \frac{9}{7}$

C

$\frac{7}{9}$

D

$\frac{9}{7}$

Solution

(d) ${T_{r + 1}} = {}^{\rm{9}}{C_r}{(3)^{9 – r}}{(ax)^r} = {}^{\rm{9}}{C_r}{(3)^{9 – r}}{a^r}{x^r}$

$\therefore $ Coefficient of ${x^r}$= ${}^9{C_r}{3^{9 – r}}{a^r}$

Hence, coefficient of ${x^2} = {}^9{C_2}{3^{9 – 2}}{a^2}$ and coefficient of ${x^{\rm{3}}}$

= ${}^9{C_3}{3^{9 – 3}}{a^3}$

So, we must have ${}^9{C_2}{3^7}{a^2} = {}^9{C_3}{3^6}{a^3}$

==> $\frac{{9.8}}{{1.2}}.3 = \frac{{9.8.7}}{{1.2.3}}.a\,\,\, $

$\Rightarrow \,\,a = \frac{9}{7}.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.