7.Binomial Theorem
medium

यदि ${(3 + ax)^9}$ के विस्तार में ${x^2}$ व ${x^3}$ के गुणांक बराबर हों, तो $a$ का मान होगा

A

$ - \frac{7}{9}$

B

$ - \frac{9}{7}$

C

$\frac{7}{9}$

D

$\frac{9}{7}$

Solution

${T_{r + 1}} = {}^{\rm{9}}{C_r}{(3)^{9 – r}}{(ax)^r} = {}^{\rm{9}}{C_r}{(3)^{9 – r}}{a^r}{x^r}$

$\therefore $ ${x^r}$ का गुणांक = ${}^9{C_r}{3^{9 – r}}{a^r}$

अत: ${x^2}$ का गुणांक $ = {}^9{C_2}{3^{9 – 2}}{a^2}$ तथा ${x^{\rm{3}}}$ का गुणांक

= ${}^9{C_3}{3^{9 – 3}}{a^3}$

अत: ${}^9{C_2}{3^7}{a^2} = {}^9{C_3}{3^6}{a^3}$

$⇒\frac{{9.8}}{{1.2}}.3 = \frac{{9.8.7}}{{1.2.3}}.a\,\,\, $

$\Rightarrow \,\,a = \frac{9}{7}.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.