7.Binomial Theorem
normal

${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ માં $x^4$ નો સહગુણક મેળવો 

A

$\frac{{405}}{{256}}$

B

$\frac{{504}}{{259}}$

C

$\frac{{450}}{{263}}$

D

$\frac{{405}}{{512}}$

Solution

$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

Applying to the above question we get $T_{r+1}=(-1)^{r+10} C_{r} x^{10-r} 2^{r-10} 3^{r} x^{-2 r}$

$=(-1)^{r \cdot 10} C_{r} x^{10-3 r} 2^{r-10} 3^{r} \ldots$

For the coefficient of $x^{4}$

$10-3 r=4$

$6=3 r$

$r=2$

Substituting in (i) we get $T_{3}={ }^{10} C_{2} x^{4} 2^{-8} 3^{2}$

$=\frac{10.9 .3^{2}}{2 ! 2^{8}}$

$=\frac{405}{256}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.