7.Binomial Theorem
medium

यदि ${(1 + x)^{2n}}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद समान्तर श्रेणी में हैं, तो $2{n^2} - 9n + 7$ का मान होगा

A

$-1$

B

$0$

C

$1$

D

$3\over2$

Solution

${T_2} = {}^{2n}{C_1}\,\,x$, ${T_3} = {}^{2n}{C_2}\,\,{x^2}$,  ${T_4} = {}^{2n}{C_3}\,\,{x^3}$

$T_2, T_3, T_4$ के गुणांक समान्तर श्रेणी में हैं।

$⇒2.{}^{2n}{C_2} = {}^{2n}{C_1} + {}^{2n}{C_3}$

$⇒2\frac{{2n!}}{{2\,!\,(2n – 2)\,!}} = \frac{{2n!}}{{(2n – 1)\,!}} + \frac{{2n!}}{{3\,!\,(2n – 3)\,!}}$

$⇒\frac{{2\,.\,2n(2n – 1)}}{2} = 2n + \frac{{\,2n(2n – 1)(2n – 2)}}{6}$

$⇒n(2n – 1) = n + \frac{{(n)(2n – 1)(2n – 2)}}{6}$

$⇒6(2{n^2} – n) = 6n + 4{n^3} – 6{n^2} + 2n$

$⇒6n(2n – 1) = 2n(2{n^2} – 3n + 4)$

$⇒6n – 3 = 2{n^2} – 3n + 4$

$⇒0 = 2{n^2} – 9n + 7$

$2{n^2} – 9n + 7 = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.