${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ के विस्तार में पूर्णांक पदों की संख्या होगी
$32$
$33$
$34$
$35$
$(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+$ $\cdots \cdots+x^{1000}$ के द्विपद प्रसार में $x^{50}$ का गुणाँक है
प्राकृत संख्या $m$, जिसके लिए $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ के द्विपद प्रसार में $x$ का गुणांक $1540$ है
$\left(\frac{1- t ^{6}}{1- t }\right)^{3}$ के प्रसार में $t ^{4}$ का गुणांक है
माना $\left(\sqrt{\mathrm{x}}-\frac{6}{\mathrm{x}^{\frac{3}{2}}}\right)^{\mathrm{n}}, \mathrm{n} \leq 15$ के द्विपद प्रसार में अचर पद $\alpha$ है। यदि इस प्रसार में शेष पदों के गुणांकों का योग $649$ है तथा $\mathrm{x}^{-\mathrm{n}}$ का गुणांक $\lambda \alpha$ है, तो $\lambda$ बराबर है_________
माना कि $m$ ऐसा न्यूनतम धनात्मक पूर्णांक (smallest positive integer) है कि $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ के विस्तार में $x^2$ का गुणांक $(3 n+1)^{51} C_3$ किसी धनात्मक पूर्णांक $n$ के लिए है। तब $n$ का मान है