${(\sqrt x - \sqrt y )^{17}}$ के विस्तार में $16$ वाँ पद होगा
$136x{y^7}$
$136xy$
$ - 136x{y^{15/2}}$
$ - 136x{y^2}$
यदि ${(1 + x)^n}$ के विस्तार में $p$ वें, $(p + 1)$ वें तथा $(p + 2)$ वें पदों के गुणांक समांतर श्रेणी में हों, तो
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{32}}$ का गुणांक होगा
${(1 + x)^{2n}}$ के प्रसार में महत्तम पद का गुणांक भी महत्तम होने के लिये $x$ का मान निम्न अन्तराल में आता है
यदि $\left( x +\sqrt{ x ^{2}-1}\right)^{6}+\left( x -\sqrt{ x ^{2}-1}\right)^{6}$ के प्रसार में $x ^{4}$ तथा $x ^{2}$ के गुणांक क्रमशः $\alpha$ तथा $\beta$ हैं, तो
यदि सभी $x \in R$ के लिए $1+x^{4}+x^{5}=\sum_{ i =0}^{5} a _{ i }(1+x)^{ i }$ है, तो $a _{2}$ है