यदि सार्वत्रिक गुरुत्वाकर्षण नियतांक $(G)$, प्लांक नियतांक $(h)$ तथा प्रकाश के वेग $(c)$ को मूल मात्रक माना जाए तो परिक्रमण त्रिज्या (Radius of gyration) की विमा होगी

  • A

    ${h^{1/2}}{c^{ - 3/2}}{G^{1/2}}$

  • B

    ${h^{1/2}}{c^{3/2}}{G^{1/2}}$

  • C

    ${h^{1/2}}{c^{ - 3/2}}{G^{ - 1/2}}$

  • D

    ${h^{ - 1/2}}{c^{ - 3/2}}{G^{1/2}}$

Similar Questions

किसी पुस्तक में, जिसमें छपाई की अनेक त्रुटीयां हैं, आवर्त गति कर रहे किसी कण के विस्थापन के चार भिन्न सूत्र दिए गए हैं 

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

$(a=$ कण का अधिकतम विस्थापन, $v=$ कण की चाल, $T=$ गति का आवर्त काल ) । विमीय आधारों पर गलत सूत्रों को निकाल दीजिए |

यदि बल $(F)$, लम्बाई $(L)$ तथा समय $(T)$ को मूल-मात्रक माना जाये तो द्रव्यमान का विमीय सूत्र होगा

एक विमारहित राशि को इलेक्ट्रॉनिक आवेश $e$, मुक्त आकाश की विद्युतशीलता (permittivity) $\varepsilon_0$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ से व्यक्त करते हैं। यदि इस विमारहित राशि को $e^\alpha \varepsilon_0^\beta h^\gamma c^\delta$ से निर्दिष्ट किया जाता है तथा $n$ एक अशून्य पूर्णांक है तो $(\alpha, \beta, \gamma, \delta)$ का मान होगा,

  • [IIT 2024]

यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी

  • [AIEEE 2012]

ऊर्जा घनत्व का व्यंजक निम्नवत है $u =\frac{\alpha}{\beta} \sin \left(\frac{\alpha x }{ kt }\right)$, जहाँ $\alpha$ एवं $\beta$ स्थिरांक हैं, $x$ विस्थापन है, $k$ वोल्टजमैन स्थिरांक है एवं $t$ तापमान है। $\beta$ की विमाऐं होंगी :

  • [JEE MAIN 2022]