यदि सार्वत्रिक गुरुत्वाकर्षण नियतांक $(G)$, प्लांक नियतांक $(h)$ तथा प्रकाश के वेग $(c)$ को मूल मात्रक माना जाए तो परिक्रमण त्रिज्या (Radius of gyration) की विमा होगी
${h^{1/2}}{c^{ - 3/2}}{G^{1/2}}$
${h^{1/2}}{c^{3/2}}{G^{1/2}}$
${h^{1/2}}{c^{ - 3/2}}{G^{ - 1/2}}$
${h^{ - 1/2}}{c^{ - 3/2}}{G^{1/2}}$
कोई बल $F = at + b{t^2}$से प्रदर्शित किया जाता है, जहाँ $t$ समय है $a$ व $b$ की विमायें होगी
निम्नलिखित में से कौन से समीकरण विमीय रूप से सत्य हैं ?
जहाँ $t =$ समय, $h =$ ऊँचाई, $s =$ पष्ठ तनाव, $\theta=$ कोण, $\rho=$ घनत्व, $a , r =$ त्रिज्या, $g =$ गुरूत्वीय त्वरण, $v =$ आयतन, $p =$ दाब, $W =$ किया गया कार्य, $\Gamma=$ बल आधूर्ण, $\varepsilon=$ विद्युत शीलता, $E =$ विद्युत क्षेत्र, $J =$ धारा घनत्व, $L =$ लंबाई।
समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी
यदि $\mathrm{R}, \mathrm{X}_{\mathrm{L}}$. तथा $\mathrm{X}_{\mathrm{C}}$ क्रमशः प्रतिरोध, प्रेरकीय प्रतिघात एवं धारतीय प्रतिघात को निरूपित करते है तो निम्न में से कौनसा विमाहीन है?