समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी
${M^{ - 1}}{L^0}{T^{ - 2}}$
${M^1}{L^0}{T^{ - 2}}$
${M^1}{L^0}{T^{ 2}}$
${M^1}{L^1}{T^{ - 2}}$
यदि प्लांक नियतांक $(h)$, निर्वात में प्रकाश की चाल $(c)$ तथा न्यूटन का गुरुत्वाकर्षण नियतांक $(G)$ तीन मौलिक नियतांक हो, तो निम्नलिखित में किसकी विमा लम्बाई की विमा होगी
दो भौतिक राशियों $A$ तथा $\mathrm{B}$ की परिकल्पना कीजिये जो एक दूसरे से संबंध $E=\frac{B-x^2}{A t}$ के द्वारा संबंधित है जहाँ $\mathrm{E}, \mathrm{x}$ तथा $\mathrm{t}$ की विमाएँ क्रमशः ऊर्जा, लम्बाई तथा समय की विमाओं के समान है। $\mathrm{AB}$ की विमां है :
यदि द्रव्यमान, लम्बाई और समय के स्थान पर समय $( T )$, वेग $( C )$ तथा कोणीय संवेग $( h )$ को मूलभूत राशियाँ मान लें तो द्रव्यमान की विमा को इन राशियों के रूप में निम्न तरीके से लिखेंगे
एक राशि $f$ का सूत्र $f =\sqrt{\frac{ hc ^{5}}{ G }}$ है। यहाँ पर $c$ प्रकाश की गति $G$ सर्वव्यापी गुरूत्वाकर्षण स्थिरांक तथा $h$ प्लांक स्थिरांक है। $f$ की विमाएँ निम्न में से किसके समान है ?
मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें