If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to $.......$.
$23$
$22$
$24$
$21$
Let $f(x)$ and $g(x)$ be two functions given by $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ and $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right).$ If $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$,then the value of $k$ is
If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?
Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$ Then the number of elements in the set $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ and $f$ is not one-one $\}$ is
Let $\quad E_1=\left\{x \in R : x \neq 1\right.$ and $\left.\frac{x}{x-1}>0\right\}$ and $\quad E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ is a real number $\}$.
(Here, the inverse trigonometric function $\sin ^{-1} x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ )
Let $f : E _1 \rightarrow R$ be the function defined by $f(x)=\log _c\left(\frac{x}{x-1}\right)$ and $g: E_2 \rightarrow R$ be the function defined by $g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$
$LIST I$ | $LIST II$ |
$P$ The range of $f$ is | $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$ |
$Q$ The range of $g$ contains | $2$ $(0,1)$ |
$R$ The domain of $f$ contains | $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$ |
$S$ The domain of $g$ is | $4$ $(-\infty, 0) \cup(0, \infty)$ |
$5$ $\left(-\infty, \frac{ e }{ e -1}\right]$ | |
$6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$ |
The correct option is:
If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$