यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|

  • [JEE MAIN 2023]
  • A

    $23$

  • B

    $22$

  • C

    $24$

  • D

    $21$

Similar Questions

माना $f( x )= a ^{ x }( a >0)$ को $f( x )=f_{1}( x )+f_{2}( x )$, के रूप में लिखा गया है जबकि $f_{1}( x )$ एक सम फलन है और $f_{2}( x )$ एक विषम फलन है, तो $f_{1}( x + y )+f_{1}( x - y )$ बराबर है 

  • [JEE MAIN 2019]

यादि $f(x) = \cos (\log x)$, तब  $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]

यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के

  • [JEE MAIN 2014]

माना $f(n)=\left[\frac{1}{3}+\frac{3 n}{100}\right] n$, जहाँ $[n]$ एक महत्तम पूणांक, जो $n$ से छोटा अथवा बराबर है, तो $\sum_{ n =1}^{56} f(u)$ बराबर है

  • [JEE MAIN 2014]

फलन $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^2-1}\right)}{\pi}\right)$ का प्रांत है :

  • [JEE MAIN 2022]