જો અવકાશનાં $(x, y, z)\, m$ બિંદુ આગળ વિદ્યુત સ્થિતિમાન $V=3 x^{2}$ વોલ્ટ વડે આપવામાં આવે છે. $(1, 0,3) \,m$ બિંદુ આગળ વિદ્યુત ક્ષેત્ર .............. હશે.
$3 \,Vm ^{-1}$, ધન $x$-અક્ષની દિશામાં
$3 \,Vm ^{-1}$, ઋણ $x$-અક્ષની દિશામાં
$6 \,Vm ^{-1}$, ધન $x$-અક્ષની દિશામાં
$6 \,Vm ^{-1}$, ઋણ $x$-અક્ષની દિશામાં
હવાનું આયનીકરણ થયા વગર મહત્તમ વિદ્યુતક્ષેત્ર $10^7\,V/m$ લગાવી શકાય છે. તો $0.10\,m$ ત્રિજયા ધરાવતા ગોળાને હવામાં મહતમ કેટલા વિદ્યુતસ્થિતિમાન સુધી ચાર્જ કરી શકાય?
વિદ્યુતસ્થિતિમાન પ્રચલન એટલે શું ?
બિંદુ $ (x,y,z) $ (મીટરમાં) આગળનું વિદ્યુતસ્થિતિમાન $ V=4x^2$ $volt$ છે. બિંદુ $(1,0,2)$ આગળ વિદ્યુતક્ષેત્રની તીવ્રતા $(V/m$ માં) ......
ગોળા પર પથરાયેલ વિજભાર માટે વિજભાર ઘનતા $\rho \left( r \right)$ છે. $r_0, r_1, r_2,......r_N$ ત્રિજ્યા ધરાવતી $N$ સમસ્થિતિમાન સપાટી પર વિદ્યુતસ્થિતિમાન ${V_0},{V_0} + \Delta V,{V_0} + 2\Delta V,$$.....{V_0} + N\Delta V\left( {\Delta V > 0} \right)$ છે. જો $V_0$ અને $\Delta V$ ના બધા મૂલ્ય માટે ગોળાની ત્રિજ્યામાં તફાવત અચળ હોય તો …
$0.2\, m ^{3}$ કદના અવકાશમાં એક ચોક્કસ ક્ષેત્રમાં $5\, V$ નો સમાન વિજસ્થિતિમાન જોવા મળે છે આ ક્ષેત્રમાં વિધુત ક્ષેત્રનું પરિમાણ ...............$N/C$ છે