જો સમીકરણ $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ ને $k$ વાસ્તવિક ઉકેલો હોય તો $k$ ની કિમત મેળવો
$2$
$3$
$4$
$6$
જો $(x + 1)$ એ સમીકરણ ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$ નો એક અવયવ હોય તો $p = $. . . .
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
અહી ગણ $\mathrm{S}$ એ $a$ ની પૃણાંક કિમંતો નો ગણ છે કે જેથી $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$ નું પાલન થાય છે તો ગણ $\mathrm{S}$ ની સભ્ય સંખ્યા મેળવો.
સમીકરણ $e^{\sin x}-2 e^{-\sin x}=2$ ના ઉકેલોની સંખ્યા મેળવો.
જો $x$ એ વાસ્તવિક હોાય તો સમીકરણ $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ નો કિંમતનો વિસ્તાર મેળવો.