The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are
$3$
$2$
$1$
None of these
If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :
Consider the following two statements
$I$. Any pair of consistent liner equations in two variables must have a unique solution.
$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,
The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is