The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are
$3$
$2$
$1$
None of these
Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,
The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is
If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals
Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is
If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always