જો ગોળાની ત્રિજ્યા માપવામાં $2\,\%$ ની ત્રુટિ હોય, તો ગોળાના કદની ગણતરી કરવામાં ત્રુટિ ($\%$ માં) કેટલી હશે?
$2$
$4$
$6$
$8$
જો $Z =\frac{ A ^{2} B ^{3}}{ C ^{4}}$ હોય, તો $Z$ માં સાપેક્ષ ત્રુટિ ........... હશે.
એક વૈજ્ઞાનિકે એક ચોકકસ ભૌતિક રાશિના પ્રયોગ કરીને $100$ અવલોકન લીધા. તે જ પ્રયોગ ફરીથી કરીને $ 400$ અવલોકન મેળવ્યા. આ પરથી ત્રુટિના મૂલ્ય વિશે શું કહી શકાય?
સાદા લોલકનો આવર્તકાળ $T =2 \pi \sqrt{\frac{\ell}{ g }}$ છે. $1\, mm$ ચોકસાઇથી લોલકની લંબાઈ માપતા $10\, cm$ મળે છે. $1\,s$ ની લઘુતમ માપશક્તિ વાળી ઘડિયાળથી માપતા $200$ દોલનનો સમય $100$ સેકન્ડ મળે છે. આ સાદા લોલક દ્વારા $g$ ના મૂલ્યને ચોકસાઈ સાથે માપતા પ્રતિશત ત્રુટી $x$ મળે છે.$x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું ($\%$ માં) હશે?
સાદા લોલકનાં દોલનોનો આવર્તકાળ $100\,cm$ લંબાઈના લોલક વડે માપવામાં આવે છે જેમાં $25$ દોલનો માટે માપેલ સમય $50\,sec$ જેટલો મળે છે. સ્ટોપવોચની લઘુત્તમ માપશક્તિ $0.1\,sec$ અને મીટર પટ્ટીની લઘુત્તમ માપશક્તિ $0.1\,cm$ હોય તો $g$ ના મૂલ્યમાં મહતમ પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?
સાદા લોલકના પ્રયોગમાં લોલકની લંબાઈ અને ગુરુત્વપ્રવેગના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $2 \% $ અને $ 4 \% $ હોય, તો આવર્તકાળના માપનમાં મળતી મહત્તમ પ્રતિશત ત્રુટિ =.....