જો ${\left( {{y^2} + \frac{c}{y}} \right)^5}$ ના વિસ્તરણમાં $y$ નો સહગુણક મેળવો.
$20c$
$10c$
$10{c^3}$
$20{c^2}$
$\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$ ના વિસ્તરણમાં $t$ થી સ્વતંત્ર હોય તેવા અચળ પદની મહતમ કિમંત $K$ હોય તો $8\,K$ નું મુલ્ય $....$ મેળવો.
જો વિસ્તરણ ${\left[ {{a^{\frac{1}{{13}}}}\,\, + \,\,\frac{a}{{\sqrt {{a^{ - 1}}} }}} \right]^n}$ નું બીજું પદ $14a^{5/2}$ હોય તો $\frac{{^n{C_3}}}{{^n{C_2}}}$ ની કિમત મેળવો
ધારોકે $(1+2 x)^n$ ના દ્વિપદી વિસ્તરણમાં ત્રણ ક્રમિક પદોનાં સહગુણકો $2:5:8$ ના ગુણોત્તર માં છે. તો આ ત્રણ પદોની મધ્યમાં આવેલ પદનો સહગુણક $.........$ છે.
$\left(x^4-\frac{1}{x^3}\right)^{15}$ ના વિસ્તરણમાં $x^{18}$ નો સહગુણક $........$ છે.
જો $(x - 2y + 3 z)^n,$ $n \in N$ ના વિસ્તરણમાં બધા સહગુણકોનો સરવાળો $128$ હોય તો $(1 + x)^n$ ના વિસ્તરણમાં મહત્તમ સહગુણક મેળવો