If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is
$1$
$- 1$
$0$
$- 2$
If $a,\,b,\,c$ are in $A.P.$, then $(a + 2b - c)$ $(2b + c - a)$ $(c + a - b)$ equals
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
If the sum of the roots of the equation $a{x^2} + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then $b{c^2},\;c{a^2},\;a{b^2}$ will be in
If the ${p^{th}}$ term of an $A.P.$ be $q$ and ${q^{th}}$ term be $p$, then its ${r^{th}}$ term will be
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is