If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :
$\frac{1}{4}$
$\frac{1}{5}$
$\frac{1}{7}$
$\frac{1}{6}$
If twice the $11^{th}$ term of an $A.P.$ is equal to $7$ times of its $21^{st}$ term, then its $25^{th}$ term is equal to
If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in
Let the sequence ${a_1},{a_2},{a_3},.............{a_{2n}}$ form an $A.P. $ Then $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $
In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -
Let $a_1=8, a_2, a_3, \ldots a_n$ be an $A.P.$ If the sum of its first four terms is $50$ and the sum of its last four terms is $170$ , then the product of its middle two terms is