Let $A B C D$ be a quadrilateral such that there exists a point $E$ inside the quadrilateral satisfying $A E=B E=C E=D E$. Suppose $\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is

  • [KVPY 2020]
  • A

    $\frac{\pi}{6}$

  • B

    $\frac{\pi}{4}$

  • C

    $\frac{\pi}{3}$

  • D

    $\frac{\pi}{2}$

Similar Questions

If the sum of the first $2n$ terms of $2,\,5,\,8...$ is equal to the sum of the first $n$ terms of $57,\,59,\,61...$, then $n$ is equal to

  • [IIT 2001]

Let $a_1, a_2 , a_3,.....$ be an $A.P$, such that $\frac{{{a_1} + {a_2} + .... + {a_p}}}{{{a_1} + {a_2} + {a_3} + ..... + {a_q}}} = \frac{{{p^3}}}{{{q^3}}};p \ne q$. Then $\frac{{{a_6}}}{{{a_{21}}}}$ is equal to

  • [JEE MAIN 2013]

If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

If the sides of a right angled traingle are in $A.P.$, then the sides are proportional to

If in the equation $a{x^2} + bx + c = 0,$ the sum of roots is equal to sum of square of their reciprocals, then $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in