सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं
$\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
$\left[M L^{2} T^{8} Q^{4}\right]$
$\left[M^{-2} L^{-3} T^{2} Q^{4}\right]$
$\left[M^{-2} L^{-2} T Q^{2}\right]$
यदि लम्बाई की विमायें ${G^x}{c^y}{h^z}$ से प्रदर्शित की जाती हैं, जहाँ $G,\,c$ और $h$ क्रमश: सार्वत्रिक गुरुत्वाकर्षण नियतांक, प्रकाश का वेग और प्लांक नियतांक हैं, तो
यदि $v$ चाल, $r = $ त्रिज्या तथा $g$ गुरुत्वीय त्वरण हो तो विमाहीन राशि होगी
कोहरे की स्थिति में वह दूरी $d$, जहाँ से सिग्नल स्पष्ट रूप से दिखाई दे, जानने के लिए एक रेलवे इंजीनियर विमीय विश्लेषण का प्रयोग करता है। उसके अनुसार यह दूरी $d$ कोहरे के द्रव्यमान घनत्व $\rho$ सिग्नल के प्रकाश की तीव्रता $S$ (शक्ति/क्षेत्रफल) तथा उसकी आवृत्ति $f$ पर निर्भर है। यदि इंजीनियर $d$ को $S ^{1 / n}$ के समानुपाती पाता है, तब $n$ का मान है :